962 research outputs found

    Compliant rolling-contact architected materials for shape reconfigurability.

    Get PDF
    Architected materials can achieve impressive shape-changing capabilities according to how their microarchitecture is engineered. Here we introduce an approach for dramatically advancing such capabilities by utilizing wrapped flexure straps to guide the rolling motions of tightly packed micro-cams that constitute the material's microarchitecture. This approach enables high shape-morphing versatility and extreme ranges of deformation without accruing appreciable increases in strain energy or internal stress. Two-dimensional and three-dimensional macroscale prototypes are demonstrated, and the analytical theory necessary to design the proposed materials is provided and packaged as a software tool. An approach that combines two-photon stereolithography and scanning holographic optical tweezers is demonstrated to enable the fabrication of the proposed materials at their intended microscale

    Additively manufacturable micro-mechanical logic gates.

    Get PDF
    Early examples of computers were almost exclusively based on mechanical devices. Although electronic computers became dominant in the past 60 years, recent advancements in three-dimensional micro-additive manufacturing technology provide new fabrication techniques for complex microstructures which have rekindled research interest in mechanical computations. Here we propose a new digital mechanical computation approach based on additively-manufacturable micro-mechanical logic gates. The proposed mechanical logic gates (i.e., NOT, AND, OR, NAND, and NOR gates) utilize multi-stable micro-flexures that buckle to perform Boolean computations based purely on mechanical forces and displacements with no electronic components. A key benefit of the proposed approach is that such systems can be additively fabricated as embedded parts of microarchitected metamaterials that are capable of interacting mechanically with their surrounding environment while processing and storing digital data internally without requiring electric power

    Lisht as a New Kingdom glass-making site with its own chemical signature

    Get PDF
    Lisht is one of a few New Kingdom sites with known glass-working debris. Here, we present evidence for the primary production of glass at Lisht, including crucible fragments and semi-finished glass. We also provide 12 new chemical analyses of glass from Lisht, including trace elements. We argue that the glass made at Lisht has a specific chemical signature within the broader range of Late Bronze Age glass compositions from Egypt, further underlining the former existence of primary glass production there and offering the possibility of identifying Lisht-made glass elsewhere in Egypt and beyond

    Computationally efficient design of directionally compliant metamaterials

    Get PDF
    Designing mechanical metamaterials is overwhelming for most computational approaches because of the staggering number and complexity of flexible elements that constitute their architecture—particularly if these elements don’t repeat in periodic patterns or collectively occupy irregular bulk shapes. We introduce an approach, inspired by the freedom and constraint topologies (FACT) methodology, that leverages simplified assumptions to enable the design of such materials with ~6 orders of magnitude greater computational efficiency than other approaches (e.g., topology optimization). Metamaterials designed using this approach are called directionally compliant metamaterials (DCMs) because they manifest prescribed compliant directions while possessing high stiffness in all other directions. Since their compliant directions are governed by both macroscale shape and microscale architecture, DCMs can be engineered with the necessary design freedom to facilitate arbitrary form and unprecedented anisotropy. Thus, DCMs show promise as irregularly shaped flexure bearings, compliant prosthetics, morphing structures, and soft robots

    Leishmania isoenzyme polymorphisms in Ecuador: Relationships with geographic distribution and clinical presentation

    Get PDF
    Background: Determinants of the clinical presentation of the leishmaniases are poorly understood but Leishmania species and strain differences are important. To examine the relationship between clinical presentation, species and isoenzyme polymorphisms, 56 Leishmania isolates from distinct presentations of American tegumentary leishmaniasis (ATL) from Ecuador were analyzed. Methods: Isolates were characterized by multilocus enzyme electrophoresis for polymorphisms of 11 isoenzymes. Patients were infected in four different ecologic regions: highland and lowland jungle of the Pacific coast, Amazonian lowlands and Andean highlands. Results: Six Leishmania species constituting 21 zymodemes were identified: L. (Viannia) panamensis (21 isolates, 7 zymodemes), L. (V.) guyanensis (7 isolates, 4 zymodemes), L. (V.) braziliensis (5 isolates, 3 zymodemes), L. (Leishmania) mexicana (11 isolates, 4 zymodemes), L. (L.) amazonensis (10 isolates, 2 zymodemes) and L. (L.) major (2 isolates, 1 zymodeme). L. panamensis was the species most frequently identified in the Pacific region and was associated with several clinical variants of cutaneous disease (CL); eight cases of leishmaniasis recidiva cutis (LRC) found in the Pacific highlands were associated with 3 zymodemes of this species. Mucocutaneous leishmaniasis found only in the Amazonian focus was associated with 3 zymodemes of L. braziliensis. The papular variant of CL, Uta, found in the Andean highlands was related predominantly with a single zymodeme of L. mexicana. Conclusion: Our data show a high degree of phenotypic variation within species, and some evidence for associations between specific variants of ATL (i.e. Uta and LRC) and specific Leishmania zymodemes. This study further defines the geographic distribution of Leishmania species and clinical variants of ATL in Ecuador

    Computationally efficient design of directionally compliant metamaterials

    Get PDF
    Designing mechanical metamaterials is overwhelming for most computational approaches because of the staggering number and complexity of flexible elements that constitute their architecture—particularly if these elements don’t repeat in periodic patterns or collectively occupy irregular bulk shapes. We introduce an approach, inspired by the freedom and constraint topologies (FACT) methodology, that leverages simplified assumptions to enable the design of such materials with ~6 orders of magnitude greater computational efficiency than other approaches (e.g., topology optimization). Metamaterials designed using this approach are called directionally compliant metamaterials (DCMs) because they manifest prescribed compliant directions while possessing high stiffness in all other directions. Since their compliant directions are governed by both macroscale shape and microscale architecture, DCMs can be engineered with the necessary design freedom to facilitate arbitrary form and unprecedented anisotropy. Thus, DCMs show promise as irregularly shaped flexure bearings, compliant prosthetics, morphing structures, and soft robots

    Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania

    Get PDF
    Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US11,841andtothepatientsthemselvesatUS 11,841 and to the patients themselves at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services
    • 

    corecore